
Ray Tracing:
Image Quality and Texture

Alex Benton, University of Cambridge –

A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd 1

Shadows

To simulate shadows in ray tracing, fire a ray
from P towards each light Li. If the ray hits
another object before the light, then discard Li
in the sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.

2

D

O

P

L
1

Softer shadows

Shadows in nature are not sharp because light sources are not
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration:

a coarse simulation of an integral over a space
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.

3

R
ay

s p
er

 sh
ad

ow
 te

st
: 2

0

Light radius: 1

All images anti-aliased with 4x supersampling.
Distance to light in all images: 20 units

R
ay

s p
er

 sh
ad

ow
 te

st
: 1

00

Light radius: 5

Softer shadows

4

E

P

θ

L

S

Raytraced spotlights

D

To create a spotlight shining along axis S, you
can multiply the (diffuse+specular) term by
(max(L•S,0))m.
● Raising m will tighten the spotlight,

but leave the edges soft.
● If you’d prefer a hard-edged spotlight

of uniform internal intensity, you can
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).

5

E

P

L
1

Q

Reflection

Reflection rays are calculated as:
R = 2(-D•N)N+D

● Finding the reflected color is a
recursive raycast.

● Reflection has scene-dependant
performance impact.

● If you’re using the GPU, GLSL supports
reflect() as a built-in function.

D

6

num bounces=1

num bounces=0 num bounces=2

num bounces=3 7

E D
DT

Transparency

To add transparency, generate and trace a new
transparency ray with ET=P, DT=D.

To support this in software, make color a 1x4 vector
where the fourth component, ‘alpha’,
determines the weight of the recursed
transparency ray.

8

1 Or sound waves or other waves

Refraction

The angle of incidence of a ray of light where it
strikes a surface is the acute angle between the
ray and the surface normal.
The refractive index of a material is a measure
of how much the speed of light1 is reduced
inside the material.
● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

9

Snell’s Law:

“The ratio of the sines of the angles of incidence of a ray of
light at the interface between two materials is equal to the
inverse ratio of the refractive indices of the materials is equal
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and René Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

Refraction

10

Refraction in ray tracing

Using Snell’s Law and the angle of
incidence of the incoming ray, we
can calculate the angle from the
negative normal to the outbound
ray.

E
D

P

P’

N
θ1

θ2

11

Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in

[-1,1].
● We call this the angle of total

internal reflection: light is trapped
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal
reflection

12

Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency,
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that
curved or inclined lines appear
inappropriately jagged, caused by the
mapping of a number of points to the same
pixel.

13

Aliasing

-

=

14

Anti-aliasing

Fundamentally, the problem with aliasing is that we’re
sampling an infinitely continuous function (the color of
the scene) with a finite, discrete function (the pixels of the
image).

Image source: www.svi.nl

One solution to this is
super-sampling. If we fire
multiple rays through each
pixel, we can average the
colors computed for every
ray together to a single
blended color.

15

http://www.svi.nl/

Anti-aliasing

Single point
● Fire a single ray through the pixel’s center

Super-sampling
● Fire multiple rays through the pixel and

average the result
● Regular grid, random, jittered, Poisson

disks

Adaptive super-sampling
● Fire a few rays through the pixel, check

the variance of the resulting values, if
similar enough then stop else fire more
rays

16

Types of super-sampling

Regular grid
● Divide the pixel into a number of sub-pixels and

fire a ray through the center of each
● This can still lead to noticeable aliasing unless a

very high resolution of sub-pixel grid is used

Random
● Fire N rays at random points in the pixel
● Replaces aliasing artifacts with noise artifacts

● But the human eye is much less sensitive to
noise than to aliasing

● Requires special treatment for animation

17

Types of super-sampling

Poisson disk
● Fire N rays at random points in

the pixel, with the proviso that
no two rays shall pass through
the pixel closer than ε to one
another

● For N rays this produces a
better looking image than pure
random sampling

● However, can be very hard to
implement correctly / quickly

18

Types of super-sampling

Jittered
● Divide the pixel into N sub-pixels and fire one

ray at a random point in each sub-pixel
● Approximates the Poisson disk behavior
● Better than pure random sampling, easier (and

significantly faster) to implement than Poisson

19

Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

Image credit:
http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 20

http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Texture mapping

As observed in last year’s course, real-life objects rarely
consist of perfectly smooth, uniformly colored surfaces.

Texture mapping is the art of applying an image to a
surface, like a decal. Coordinates on the surface are
mapped to coordinates in the texture.

21

Texture mapping

0, 0

0, 1 1, 1

1, 0

We’ll need to query the color of the
texture at the point in 3D space where
the ray hits our surface. This is
typically done by mapping

 (3D point in local coordinates)
 → U,V coordinates bounded [0-1, 0-1]
 → Texture coordinates bounded by

[image width, image height]

22

UV mapping the primitives

UV mapping of a unit cube
if |x| == 1:
 u = (z + 1) / 2
 v = (y + 1) / 2
elif |y| == 1:
 u = (x + 1) / 2
 v = (z + 1) / 2
else:
 u = (x + 1) / 2
 v = (y + 1) / 2

UV mapping of a torus of
major radius R

 u = 0.5 + atan2(z, x) / 2π
 v = 0.5 + atan2(y, ((x2 + z2)½ - R) / 2π

UV mapping of a unit sphere
 u = 0.5 + atan2(z, x) / 2π
 v = 0.5 - asin(y) / π

UV mapping is easy for primitives but can be very difficult for arbitrary shapes.

23

Texture mapping

One constraint on using images for texture is that images
have a finite resolution, and a virtual (ray-traced) camera
can get quite near to the surface of an object.

This can lead to a
single image pixel
covering multiple
ray-traced pixels (or
vice-versa), leading to
blurry or aliased pixels
in your texture.

24

Procedural texture

Instead of relying on discrete
pixels, you can get infinitely
more precise results with
procedurally generated textures.

Procedural textures compute the
color directly from the U,V
coordinate without an image
lookup.

For example, here’s the code for
the torus’ brick pattern (right):

 tx = (int) 10 * u

 ty = (int) 10 * v
 oddity = (tx & 0x01) == (ty & 0x01)
 edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
 return edge ? WHITE : RED

I’ve cheated slightly and multiplied the u
coordinate by 4 to repeat the brick texture
four times around the torus.

25

Non-color textures: normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the ray tracer
computes a trompe-l’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a
dent on the surface.

If we duplicate the normals, we don’t
have to duplicate the dent.

26

Non-color textures: normal mapping

27

Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently
in one direction from another, as a function of the surface itself. The specular
component is modified by the direction of the light.

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/ 28

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/
http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/

Procedural volumetric texture

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow
rings, with darker wood from earlier in the year and
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood +
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 29

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the
surface look more natural is to add a randomized noise
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1

where noise(P) is a function that maps 3D coordinates in
space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

30

Perlin noise

Perlin noise (invented by Ken Perlin) is a method for
generating noise which has some useful traits:

● It is a band-limited repeatable pseudorandom
function (in the words of its author, Ken Perlin)

● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended

arbitrarily in space, yet cached deterministically
● Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 31

http://www.noisemachine.com/talk1/

Perlin noise 1

Perlin noise caches ‘seed’ random values on a grid at
integer intervals. You’ll look up noise values at
arbitrary points in the plane, and they’ll be
determined by the four nearest seed randoms on
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)}
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html32

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 2

For each of the four corners, take the dot product of the
random seed vector with the vector from that corner to
(x, y). This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values
of the dot products will change smoothly, with no
discontinuity.

● As (x, y) approaches a grid point, the contribution from
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)

33

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 3

Now we take a weighted average of LL, LR, UL, UR.
Perlin noise uses a weighted averaging function chosen
such that values close to zero and one are moved closer
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =
 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))

Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’

34

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Tuning noise

Texture frequency
1 → 3

Noise frequency
1 → 3

Noise amplitude
1 → 3 35

http://www.youtube.com/watch?v=H4Xll-x2vL0

References
Ray tracing
Peter Shirley, Steve Marschner. Fundamentals of Computer Graphics. Taylor & Francis,
21 Jul 2009
Hughes, Van Dam et al. Computer Graphics: Principles and Practice. Addison Wesley,
3rd edition (10 July 2013)

Anisotropic shading
Greg Ward, “Measuring and Modeling Anisotropic Reflection”, Computer Graphics
(SIGGRAPH ’92 Proceedings), pp. 265–272, July 1992
(http://radsite.lbl.gov/radiance/papers/sg92/paper.html)
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Brushed_Metal

Perlin noise
http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

36

http://radsite.lbl.gov/radiance/papers/sg92/paper.html
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Brushed_Metal
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Brushed_Metal
http://www.noisemachine.com/talk1/
http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

